Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion.

نویسندگان

  • M N Sawka
  • A J Young
  • P B Rock
  • T P Lyons
  • R Boushel
  • B J Freund
  • S R Muza
  • A Cymerman
  • R C Dennis
  • K B Pandolf
  • C R Valeri
چکیده

We studied sea-level residents during 13 days of altitude acclimatization to determine 1) altitude acclimatization effects on erythrocyte volume and plasma volume, 2) if exogenous erythrocyte volume expansion alters subsequent erythrocyte volume and plasma volume adaptations, 3) if an increased blood oxygen content alters erythropoietin responses during altitude acclimatization, and 4) mechanisms responsible for plasma loss at altitude. Sixteen healthy men had a series of hematologic measurements made at sea level, on the first and ninth days of altitude (4,300 m) residence, and after returning to sea level. Twenty-four hours before the ascent to altitude, one group received a 700-ml infusion of autologous erythrocytes (42% hematocrit), whereas the other group received only a saline infusion. Erythrocyte infusion increased erythrocyte volume by approximately 10%, whereas saline infusion had no effect; in addition, initially at altitude, blood oxygen content was 8% higher in erythrocyte-infused than in saline-infused subjects. The new findings regarding altitude acclimatization are summarized as follows: 1) erythrocyte volume does not change during the first 13 days and is not affected by prior exogenous expansion, 2) a modest increase in blood oxygen content does not modify erythropoietin responses, 3) plasma losses are related to vascular protein losses, and 4) exogenous erythrocyte volume expansion coincides with transient increases in plasma loss, vascular protein loss, and mean arterial pressure elevation. These findings better define human blood volume responses during altitude acclimatization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness.

This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induce BV expansion: PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power i...

متن کامل

Thermoregulatory and aerobic changes after endurance training in a hypobaric hypoxic and warm environment.

Plasma volume (PV) expansion by endurance training and/or heat acclimatization is known to increase aerobic and thermoregulatory capacities in humans. Also, higher erythrocyte volume (EV) fractions in blood are known to improve these capacities. We tested the hypothesis that training in a hypobaric hypoxic and warm environment would increase peak aerobic power (VO(2)(peak)) and forearm skin vas...

متن کامل

Plasma volume expansion does not increase maximal cardiac output or VO2 max in lowlanders acclimatized to altitude.

With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle erg...

متن کامل

Hypovolemia explains the reduced stroke volume at altitude

During acute altitude exposure tachycardia increases cardiac output (Q) thus preserving systemic O2 delivery. Within days of acclimatization, however, Q normalizes following an unexplained reduction in stroke volume (SV). To investigate whether the altitude-mediated reduction in plasma volume (PV) and hence central blood volume (CBV) is the underlying mechanism we increased/decreased CBV by mea...

متن کامل

Long-term enhancement of pulmonary gas exchange after high-altitude residence during maturation.

In a previous study, our laboratory showed that young dogs born at sea level (SL) and raised from 2.5 mo of age to beyond somatic maturity at a high altitude (HA) of 3,100 m show enhanced resting lung function (Johnson RL Jr, Cassidy SS, Grover RF, Schutte JE, and Epstein RH. J Appl Physiol 59: 1773-1782, 1985). To examine whether HA-induced adaptation improves pulmonary gas exchange during exe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 81 2  شماره 

صفحات  -

تاریخ انتشار 1996